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Abstract  

By applying information theory to the set of topological distances from one vertex 
to all other graph vertices, one obtains four new types of vertex invariants (u i, v i, x i, Yl) 
which are real numbers (as opposed to integers). They may be combined in many ways 
to afford new topological indices. One such type leads to indices U, V, X and Y which 
show no degeneracy for alkanes with up to 15 vertices. 

1. I n t r o d u c t i o n  

Topological indices (TIs) continue to be a topic attracting interest, as attested 
by the publication of numerous reviews, some of  which appeared recently [1 - 10]. 

TIs are numbers associated with graphs, which in turn are models of chemical 
structures. In order to obtain TIs, one has to start from various graph invariants (e.g. 
local vertex invariants), and then one has to combine these invariants by means of 
various operations into a TI for the corresponding graph. Because physico-chemical 
or biological properties of chemical compounds depend on their structure in various 
ways, so far no single TI can serve for modeling all properties, and many different 
Tls have been proposed. 

Important drawbacks of TIs are their degeneracy and the derived structure 
irretrievability: when for more than one structure one obtains the same TI, 
one calls these TIs degenerate. The search led to new TIs which may be practically 
non-degenerate and therefore may serve as graph codes [11,12] or molecular ID 
numbers [13]. 

Our efforts were aimed at devising TIs with lower degeneracy than the previously 
existing ones, and we thus proposed the index J (average distance sum con-  
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nectivity [14] and, in collaboration with Bulgarian colleagures, two TIs based upon 
the HOC algorithm ~ierarchically ordered extended connectivities) [15]. More recently, 
we devised two new types of vertex invariants: one type is based on converting the 
adjacency or distance matrix of a graph into a system of linear equations, from 
which we devise these new vertex invariants [16] using techniques related to those 
previously employed by Gollender et al. [17]; the other type is based on the various 
external fragment topological indices (EFFI) where the fragment is, in turn, each 
single vertex of the molecular graph [18]. Then we may combine these vertex 
invariants in a manifold of TIs. 

2. Local graph invariants 

By removing all hydrogen atoms from the formula of a chemical compound 
containing covalent bonds, we obtain the hydrogen-depleted graph (or molecular 
graph) of that compound, whose vertices correspond to non-hydrogen atoms. In the 
particular case of hydrocarbons, the vertices of the molecular graph denote carbon 
atoms. 

Several simple graph invariants have been known: 

(i) Vertex degrees are the number of lines (covalent bonds to non-hydrogen 
atom) meeting at each vertex. In hydrocarbon graphs, vertices can have only degrees 
1, 2, 3, or 4. Vertex degrees are sums over rows or columns in the adjacency matrix 
of the graph. 

(ii) Distance ,sums are the sums of topological distances from a given vertex 
to all other graph vertices. Distances (i.e. topological distances) are the number of 
lines along the shortest path between two vertices. Distance sums also result as 
sums over rows and columns in the distance matrix of the graph. Unlike the previous 
invariant, there is no restriction on the distance sums. Vertices with lowest distance 
sums form the centroid of the graph. 

(iii) Eccentricities are the longest topological distances from a given vertex 
to any other graph vertex. The vertices with largest eccentricities are peripheral 
ones, whereas those with lowest eccentricities form the graph center. 

In acyclic graphs (trees), the center as well as the centroid is a vertex or a 
pair of adjacent vertices. The graph center and centroid may not coincide. 

Figure 1 presents as examples of the above graph invariants the unique 
identity 4-trees with 7 and 8 vertices. Hydrogen-depleted graphs of acyclic hydrocarbons 
are called 4-trees because the degree of any point (vertex) is at most 4. Among the 
alkane molecular graphs, in a single isomer of heptane and a single isomer of octane 
there are no equivalent carbon atoms; these isomers correspond to identity trees 
(thus called because they have no symmetry except for the identity operation). 

It may be seen that vertex degrees and eccentricities have a high degree of 
degeneracy: although the above identity trees have no equivalent vertices, there are 



A.T. Balaban, T.-S. Balaban, New vertex invariants 385 

Vertex degrees: 

2 2 2 

1 

Eccentricities: 

4 3 5 

Distance sums: 

13 11 19 

18 14 

18 

24 16 26 

15 20 

Fig. 1. Identity trees with n = 7 and 8 vertices and 
three of  their vertex invariants which are integers. 

in the same graph many vertices with the same vertex degree or eccentricities. It 
is normal that TIs based upon such invariants will also have high degeneracies, even 
with sophisticated operations for combining vertex invariants into TIs. 

On the other hand, the degeneracy of distance sums is lower: none for the 
vertices of the identity tree with 7 vertices, and only two pairs for the identity tree 
with 8 vertices. The index J, based on distance sums, has low degeneracy: the 
smallest 4-trees for which J is degenerate are six pairs of dodecane isomers. Interestingly, 
there are only three such pairs for 4-trees with n = 13; fifty pairs with degenerate 
J for n = 14, but only forty-two for n = 15. 

(iv) Weights in acyclic graphs are the number of lines in the longest branch 
starting from each vertex. Vertices with the lowest weights constitute the centroid. 
Weights have higher degeneracy than eccentricities: all endpoints of a given tree 
have the same weights, equal to q (the number of graph edges). 

(v) External fragment TI invariants. As already mentioned, one may devise 
TIs for molecular fragments. If the fragment in question is reduced to a vertex, by 
this procedure one obtains sets of vertex invariants. These may then be used for 
devising new TIs [15]. 

(vi) Eigenvectors. As known from quantum chemistry, for any given eigenvalue, 
the secular equation leads to a set of eigenvectors which are actually graph invariants. 
However, they have been little used for TIs. 
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(vii) Solutions of linear equations obtained from the adjacency or distance 
matrices. It was mentioned earlier that on inserting on the main diagonal of  the 
above matrices a set of  parameters and by equating each line of  these matrices with 
another set of  parameters (which may be identical or different from the previous 
set), one obtains a set of  linear equations whose solutions are new vertex invariants. 
The parameters may be chemical (e.g. Z, the atomic number of  the atom symbolized 
by the vertex), topological (e.g. vertex degree V, distance sum S), or constants. Three 
letters indicate the type of invariant: matrix, parameter for main diagonal, and 
parameter for variable-free term. Thus, invariants AZV lead to a TI which gives an 
excellent correlation with boiling points of  alkanes [16]. 

These are the main local graph invariants known so far. All but the last two 
are integers. 

Historically, the first TI, which is denoted by w, was proposed by Wiener [19] 
in 1947, and consisted of the half-sum of all entries in the distance matrix, i.e. of  
all topological distances in the graph; since the adjacency matrix is symmetrical 
relative to its main diagonal, each entry is present twice because dij= dji. Another 
way of  expressing w is by summing the distance vectors of each vertex. As an 
example, the single vertex of degree three in the unique identity trees with n = 7 
and 8 (fig. 1) has distance vectors equal to 1 , 1 , 1 , 2 , 2 , 3  and 1 , 1 , 1 , 2 , 2 , 3 , 4 ,  
respectively; the same vectors are expressed more compactly as 13223 and 132234, 
respectively, or in general by expressing all distances j with an exponent gj 
indicating how many vertices there are at distancej from the given vertex i. Therefore, 
we have the primitive local vertex invariant s (distance sum) and derived TI: 

s i= E d i j =  E j g  j ,  
J j 

w = 1/2 Z Z d i ) =  1 / 2 Z s  i. 
i j i 

3. New local graph invariants: information on distances 

It was seen that distance sums in alkanes may give rise to degeneracy of  
indices which, like J, are based on invariants of  endpoints of  each edge (line) in 
the graph. Taking into account the rapid increase in the number of  isomeric alkanes 
with increasing numbers of  carbon atoms, a lumping together of  distances by such 
a crude method as summation, loses information contained in the sequence of  
distances from a given vertex to all other graph vertices. 

We therefore propose new vertex invariants based upon the sequence of  
topological distances from a given vertex to all other vertices in the graph. We make 
use of  Shannon's formula for the information contained in a sequence of  numbers, 
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which has been extensively used for TIs by Bonchev and Trinajsti6 [20,21]. The 
use of information theoretical TIs was reviewed in a book by Bonchev [22]. 

So far, information theoretic approaches have been extensively used for 
reduction of degeneracy in TIs at the global level and only very little at the 
local invariant level. Only Basak, Raychaudhury, Klopman and coworkers [23] 
have used information theory at the local (vertex) level. Among the TIs defined 
with the local invariants, the graph distance complexity H D was found to be least 
degenerate [23]. 

In order to replace the crude operation of global distance summation by a 
more refined approach, we first convert the distance vector into new local (vertex) 
graph invariants by means of information theory. On applying Shannon's formula 
to the information content in distance vectors, we obtain (in bits) for each vertex 
i the mean local information on the magnitude of distances ui: 

Jgj J 
T log  

J 

and the local information on the magnitude of distances vi: 

V i = S i log2s i -  U i. 

For obtaining more convenient numbers, albeit not derived from rigorous 
formulas, we also propose related vertex invariants which may be called, by analogy 
with the previous ones, the extended local information on distance magnitude (xi), 
and the mean extended local information on distance magnitude (yi): 

Xi  = S i log 2 S i -- Y i ,  

Yi = ~'~ gj J l°g2 J" 
J 

We denote by log2x binary logarithms, and by log x decimal logarithms. 
Evidently, we have: 

log2x = log x log210 = log x/log 2 = 3.322 log x. 

In fig. 2, these four local vertex invariants are presented for the two identity 
trees with 7 and 8 vertices, together with the compact distance vectors from which 
these invariants were derived. In fig. 3, the vertex invariants are shown for the three 
identity trees with n = 9. 
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Distance 

vectors 

kOC Ordering 

122234 12233 123425 

123245 113223 122324 
122324 

1232456 /132234 1222324 1234526 
1223245 

Ui 

2.412 2.482 2.439 2.594 2,699 2.604 

2 ~ 6 4 3  

2.666 

V. 
1 

45.69 35.57 78.27 

56.13 
i 0 7 ~ . 5 7  

83.77 

X .  
l 

31.35 27.30 46.35 

.94 24.46 33.79 

46.69 37.79 52.07 

6 3 ~ 7 3  
53.32 

Yi 

16.75 10.75 34.36 

21.51 
4 6 ~ 4 8  

33.12 

Fig. 2. Identity trees with n = 7 and 8 vertices with 
the distance vectors and the new vertex invariants. 

For any 4-tree wherein the distance vectors of  the vertices i , j  are different, 
these two vertices will differ in their local vertex invariants u, v, x, and y. 

Of course, when the distance vectors are equal by accidental degeneracy, the 
new vertex invariants will also be equal. Thus, fig. 4 shows that among the cyclic 



A.T• Balaban, T•-S• Balaban, New vertex invariants 389 

¢ ' 4  

¢-4 , - ~  

¢',a 

0 3  

¢¢1 

i 

C O  
*¢r 

1 
c ~  
c -a  c O  

~t3 

c-.4 , - ~  

r . ~  
¢ o  

,A 

II 

L" 

.fi 

v 



390 A.T. Balaban, T.-S. Balaban, New vertex invariants 

j Degenerate, U, V, X, Y Non-degenerate 

o 

1423 

1225 

and 

o 123342 

/ \,22334 
123324 

14223 3 4 
123324 _ 1 2 and 

122332 

1225 ~ 23 

123342 \ 

/123124 
, ~  4223 

13233 ~z/>122332 

,122334 13233 

J, U, V, X, Y Degenerate : 

1322 12223 1322 

22 
12223 1 2 3 1322 

and 

142 
42 

142 

1223 
and 223 

= . 1322 

Fig. 4. Examples of cyclic graphs with degenerate J values and 
non-degenerate U, X, Y, Z values (upper part) and of poly- 
cyclic graphs with degenerate distance vectors (lower part). 
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graphs which give degenerate J-values, the monocyclic and bicyclic pair with n = 8 
have distinct distance vectors, but the t r i -and tetracyclic pairs with n =  7, 6, 5, 
respectively, have the same distance vectors, therefore they will give rise to 
degeneracy. 

Alkanes with degenerate distance vectors will be presented in section 5. 

4. New topological i n d i c e s  w i t h  l o w  d e g e n e r a c y  

From local graph invariants, one may form TIs either by means of  simple 
operations confined to one vertex (e.g. summation of  invariants, of  their positive 
or negative powers, etc.), or by more sophisticated operations involving more than 
one vertex at a time. Such operations are: solving the determinant corresponding 
to the adjacency matrix, Randi~'s formula [24] involving products~of invariants 
corresponding to endpoints of  each edge, etc. 

Summation is likely to lead to high degeneracy; therefore, by analogy with 
'the Randi6 formula and with the J index, we propose for all new local graph invariants 
one and the same operation to convert them into new TIs: 

U = q -1/2  , uiuj  , 

q ~_~(vivj)-I/2, V -  # + 1  

X - q "~{X X -~-1/2 
/1+1 z_.,~ i jJ , 

q w,( I .-1/2 
Y -  # + 1  2~ Y Y j )  • 

In all these formulas, summations are over all edges ij; q and/2 denote the 
number of  edges and cycles in the graph, respectively;/2 is also called the cyclomatic 
number of  the graph, i.e. # = q + 1 - n. For trees,/2 = 0. Table 1 presents the new 
indices for all alkanes (4-trees) with n = 4 through 8. 

Alkane structures are indicated in table 1 not only by the abbreviated name, 
but also by a code devised recently [11] which gives vertex numberings for vertices 
adjacent to vertices numbered 3, 4, etc. in increasing order. Table 1 presents alkanes 
in order of  their increasing codes. 
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Table 1 

Topological indices U, V, X and Y for alkane isomers with 4 to 8 carbon atoms 

Alkane Code Index U Index V Index X Index Y 

2-Me-C 3 11 5.79 - 1.4962 - 
C 4 12 6.06 1.0894 1.3278 3.1324 

2, 2-Me2-C 3 111 8.10 - 1.5310 - 
2-Me-C 4 112 8.36 1.1056 1.3271 3.9156 
C 5 123 8.59 0.8527 1.1751 2.3404 

2, 2-Me3-C 4 1112 11.12 1.2025 1.4095 5.1838 
2, 3-Me/-C 4 1122 11.19 1.0878 1.3399 3.9707 
3-Me-C 5 1123 11.30 0.9548 1.2441 3.1352 
2-Me-C 5 1125 11.43 0.8821 1.2008 2.6360 
C 6 1234 11.60 0.7370 1.0836 1.9580 

2, 2, 3-M%-C 4 11122 14.38 1.1586 1.4147 4.6563 
3, 3-Mez-C 5 11123 14.44 1.0737 1.3479 4.0959 
2, 2-Mez-C 5 11126 14.65 0.9705 1.2838 3.2097 
2, 3-Me2-C 5 11223 14.55 0.9655 1.2706 3.2531 
3-Et-C 5 11234 14.56 0.8992 1.2095 2.9330 
3-M3e-C 6 11235 14.74 0.8260 1.1588 2.4597 
2, 4-M%-C 5 11255 14.73 0.8752 1.2074 2.6724 
2-Me-C 6 11256 14.91 0.7585 1.1078 2.1070 
C 7 12345 15.01 0.6661 1.1095 1.7297 

2, 2, 3, 3-Me4C 4 111222 17.97 1.2012 1.4745 4.9756 
2, 3, 3-Me3-C 5 111223 18.08 1.0684 1.3678 4.0126 
2, 2, 3-Me3-C 5 111226 18.16 1.0306 1.3428 3.6700 
3-Et-3-Me-C 5 111234 18.08 1.0191 1.3217 3.7505 
3, 3-M%-C 6 111236 18.29 0.9310 1.2591 3.0706 
2, 2, 4-Me3-C 5 111266 18.36 0.9319 1.2694 3.0046 
2, 2-Me2-C 6 111267 18.57 0.8255 1.1791 2.4356 
2, 3, 4-Me3-C 5 112233 18.21 0.9638 1.2868 3.2648 
3-Et-2 -Me-C 5 112234 18.18 0.9227 1.2445 3.0824 
3, 4-Me2-C 6 112235 18.28 0.8972 1.2276 2.8870 
2, 3-Me2-C 6 112237 18.40 0.8492 1.1898 2.6100 
3-Et-C 6 112345 18.34 0.8144 1.1502 2.4808 
2, 4-Me2-C 6 112355 18.45 0.8202 1.1659 2.4512 
4-Me-C 7 112356 18.52 0.7557 1.1026 2.1650 
3-Me-C7 112357 18.60 0.7336 1.0855 2.0490 
2, 4-Me2-C 6 112566 18.63 0.7551 1.1116 2.1249 
2-Me-C7 112567 18.75 0.6803 1.0380 1.8121 
C 8 123456 18.80 0.6170 0.9707 1.5743 
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5. Discussion of the results 

Consideration of table 1 and figs. 3 and 4 leads to the following conclusions: 

(1) Local invariants ui are the smallest and fall within a narrow range. This 
is evident from the data of  the identity trees. Therefore, it is normal that U for a 
given series of  isomeric alkanes also falls within a narrow range. On the other hand, 
it can be seen that U increases regularly in the alkane series with increasing n. There 
is no overlap between values of U for alkanes with different n values. Index U, unlike 
indices J, V, X, and Y, decreases with increasing branching; it is the largest among 
all these indices. 

(2) Local invariants v i are the largest and fall within a wide range; in a given 
alkane, the ratio of largest-to-smallest vi values can be higher than 2. Values of  vi 

are lower for vertices of higher degree and lower eccentricity. The topological index 
V is the smallest among all indices discussed here and decreases slightly with 
increasing n for alkanes. All values of V for the alkanes with n = 4 to 10 overlap, 

b u t  V is a good measure for branching. 

(3) Local invariants x i and Yi behave similarly to v~, and the TIs denoted by 
X and Y behave similarly to V. The range of values is largest for y within a given 
isomer. Among v, x, and y, invariants y are the smallest; among indices V, X, and 
Y, the largest values appear for Y. The range of values is largest for Y on comparing 
alkanes with various n and for series of isomeric alkanes. Parameters x and index 
X are intermediate. 

(4) Alkane ordering within isomeric series is an important diagnostic for the 
value of  topological indices. There is complete parallelism in the ordering of  alkanes 
by J, U, V, X, and Y for alkanes with n = 4, 5, and 6. For higher n values (we checked 
up to n = 15), there are slight differences between the ordering induced by J and 
that caused by X, Y, or V: one pair of  alkanes is ordered differently by Y for n = 7 
(2, 2- and 2, 3-dimethylpentane), one pair is ordered differently for n = 8 by V (4- 
methylheptane and 2, 5-dimethylhexane), and three pairs by Y (same as above, and 
in addition: 2, 2-dimethyl- and 3-ethylhexane; 2, 2, 4-trimethyl- and 3-ethyl-2- 
methylhexane); for n = 9, one pair by Y (2, 2- and 2,5-dimethylheptane), and four 
pairs by X (2, 2-dimethylheptane and 3-ethylheptane; 2, 3-dimethylheptane and 4- 
ethylhepatne; 2, 2, 5-trimethylhexane and 4-ethyl-2-methylhexane; 2, 2, 4-trimethyl- 
hexane and 3-ethyl-4-methylhexane). These are actually minor differences. 
Bertz [10] has presented a thorough discussion of  alkane ordering via topological 
indices, and it is gratifying to find that indices V, X, and Y give an ordering which 
is quite close to that determined by J; this, in turn, is very similar to that induced 
by Bertz's procedure based on iterating line graphs. 

On the other hand, U induces (in reverse order) a markedly different ordering 
of  the higher alkanes, considering e.g. 2, 2-dimethylheptane as less branched than 
2, 3-dimethyl- and 3-ethylpentane. In fig. 5, we present the alkanes with n = 7 to 
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15 vertices, for which the lowest value was obtained for index U and the highest 
values were obtained for indices V, X, and Y within a class of  isomeric alkanes. 
These graphs represent the "most branched" 4-trees with a given n according to the 
new indices. 

Unlike index J, which is degenerate for 4-trees with n > 12, we found no 
degeneracy for 4-trees with n < 15 for any of the indices U, V, X, and Y. 

By observing the values of these TIs for linear alkanes with increasing number 
of  vertices (table 2), it is evident that U increases fast towards infinity, whereas 
V, X, and Y decrease slowly. Even if  in calculating U we would omit the factor q 
(i.e. for U/q), the resulting values increase monotonously for linear alkanes with 
increasing n. 

Table 2 

Values of various TIs for n-alkanes with increasing number n of carbon atoms 

n ' ~  Index J Index U Index V Index X Index Y 

5 2.1906 8.59 0.8526 1.1751 2.3404 
7 2.4475 15.02 0.6661 1.0195 1.7297 
9 2.5951 23.01 0.5804 0.9315 1.4601 

21 2.9014 99.11 0.4121 0.7181 0.9636 
101 3.0909 - - 0.4894 0.5837 
201 3.1160 5475.49 0.2289 0.4263 0.4952 
501 3.1313 - - 0.3630 0.4113 

1(301 3.1365 103929.69 0.1719 0.3258 0.3641 
2001 3.1390 - - 0.2954 0.3265 

Local invariants of  complete graphs (regular graphs of degree n - 1, in which 
each vertex is connected to every other vertex) all of  whose distances are equal to 
one are, of  course, zero; hence, their TIs U, V, X, and Y are meaningless. For two 
4-trees, there exist vertices whose distance vectors are composed of  distances 1: the 
central vertex in isobutane and neopentane; for these alkanes, V and Y are equal to zero. 

It should be noted that for trees, the distance vectors are .synonymous with 
the path counts used extensively by Randi6 [25]. 

Degenerate local graph invariants for 4-trees modeling alkanes are encountered 
starting with one isomer of  decane, namely 4-ethyloctane (an identity tree), in 
which the two indicated vertices in fig. 6 have identical distance vectors. 

Fig. 6. Graph of 4-ethyloctane which has for the 
marked vertices degenerate distance vectors 122232425. 
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By attaching to each of these indicated vertices one or two identical side 
chains, or by attaching to symmetrically placed vertices on the thick line such side 
chains, one obtains 4-trees with 12, 14, 16 . . . .  vertices, having pairwise identical 
distance vectors for non-equivalent vertices in the same graph. In fig. 7, we present 
the three resulting 4-trees with 12 vertices (the last one is an identity tree), and the 
nine derived 4-trees with 14 vertices (two of the last three are identity trees); 
indicated vertices have degenerate distance vectors. 

n = 14 

Fig. 7.4-trees with degenerate distance vectors with 14 and 15 vertices. 
Indicated nonequivalent vertices have the same distance vector. 

Using the mathematical formulas outlined on the basis of Shannon's information 
theory, these nonequivalent vertices with identical distance vectors will be assigned 
identical (degenerate) local invariants. Nevertheless, on combining local vertex 
invariants with topological indices U, V, X, and Y, these indices are found to have 
no degeneracy up to, and including, C15H32. It will be interesting to find the smallest 
4-trees with degenerate indices U, V, X, or Y. 

6. Conclusions 

So far, information theory has been applied mainly for reducing degeneracy 
of TIs at the global level and very little at the local level. Here, we have proposed 
an application at the local (vertex) level, and we use the local invariants for new 
TIs which are less degenerate than the index J. One of these TIs, namely U, has 
a small range of variation for isomeric families of alkanes, and increases rapidly 
with increasing number of carbon atoms in the alkane; therefore, it is different from 
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the other three new TIs, namely V, X, and Y, which behave fairly similarly to the 
index J, but with more pronounced discriminating ability than J among isomeric 
alkanes: no degeneracy was found for any of the tested alkanes with 4 to 15 carbon 
atoms. The closest similarity in alkane ordering is between J and V, as proved by 
the fact that from 4347 isomeric alkanes C15H32, ordered according to J or V values, 
very few inversions exist (less than 1%). 
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